Clifford-Gegenbauer polynomials related to the Dunkl Dirac operator
نویسندگان
چکیده
منابع مشابه
Hermite and Gegenbauer polynomials in superspace using Clifford analysis
The Clifford-Hermite and the Clifford-Gegenbauer polynomials of standard Clifford analysis are generalized to the new framework of Clifford analysis in superspace in a merely symbolic way. This means that one does not a priori need an integration theory in superspace. Furthermore a lot of basic properties, such as orthogonality relations, differential equations and recursion formulae are proven...
متن کاملGegenbauer Polynomials and Semiseparable Matrices
In this paper, we develop a new O(n logn) algorithm for converting coefficients between expansions in different families of Gegenbauer polynomials up to a finite degree n. To this end, we show that the corresponding linear mapping is represented by the eigenvector matrix of an explicitly known diagonal plus upper triangular semiseparable matrix. The method is based on a new efficient algorithm ...
متن کاملInformation entropy of Gegenbauer polynomials
The information entropy of Gegenbauer polynomials is relevant since this is related to the angular part of the information entropies of certain quantum mechanical systems such as the harmonic oscillator and the hydrogen atom in D dimensions. We give an effective method to compute the entropy for Gegenbauer polynomials with an integer parameter and obtain the first few terms in the asymptotic ex...
متن کاملAn Alternative Definition of the Hermite Polynomials Related to the Dunkl Laplacian
We introduce the so-called Clifford–Hermite polynomials in the framework of Dunkl operators, based on the theory of Clifford analysis. Several properties of these polynomials are obtained, such as a Rodrigues formula, a differential equation and an explicit relation connecting them with the generalized Laguerre polynomials. A link is established with the generalized Hermite polynomials related ...
متن کاملDunkl - Semiclassical Orthogonal Polynomials . the Symmetric Case
where A and B are fixed polynomials with degA ≤ 2, and degB = 1. In 1939, Shohat extended these ideas introducing a new class of orthogonal polynomials. In fact, he studied orthogonal polynomials associated with forms satisfying the last equation, with no restrictions in the degrees of the polynomials A, and B. Obviously, orthogonal polynomials defined as above, generalize in a natural way the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 2011
ISSN: 1370-1444
DOI: 10.36045/bbms/1307452070